Litter decomposition in British Columbia forests: Controlling factors and influences of forestry activities

Cindy E. Prescott¹, Leandra L. Blevins², and Candis Staley³

Abstract

Four commonly held beliefs about litter decomposition rates were tested in a suite of field experiments in British Columbia forests: (1) decomposition is slower in cold (northern and high-elevation) forests, (2) decomposition is faster in clearcuts than in forests, (3) broadleaf litter decomposes faster than needle litter, and (4) decomposition is faster in N-fertilized forests. Litter decomposition was slowest in dry biogeoclimatic zones and fastest in wet zones. Overall, it appears that moisture is more limiting than temperature for litter decomposition across British Columbia. The effect of clearcutting on litter decomposition rates varied among forest types. Province-wide, mass loss of pine needle litter was significantly slower in clearcuts than in adjacent forests, but this difference disappeared after 3 years. Aspen leaves and forest floor material decomposed at similar rates in forests and clearcuts. Decomposition of broadleaf litter was slightly faster than needle litter during the first 2 years, but slowed in subsequent years. After 3 years there was no significant difference between the mass remaining for broadleaf and conifer litter. In N-fertilized plots, higher N concentrations did not affect the rate of decay in litter or in forest floors. Many of our beliefs about litter decomposition and influences of forestry practices thereon should be revised in light of new empirical evidence.

KEYWORDS: climate, biogeoclimatic zones, British Columbia, mixed-species forests, nitrogen fertilization, clearcut, mass loss, litter decay.

Contact Information

¹ Associate Professor and Associate Dean, Faculty of Forestry, University of British Columbia, 2005–2424 Main Mall, Vancouver, BC V6T 1Z4. E-mail: cindy.prescott@ubc.ca

² Information Systems/Field Trials Manager, North Carolina State Forest Nutrition Cooperative, 3106 Jordan Hall, Box 8008, Raleigh, NC 27695-8008. E-mail: leandra@blevinsphoto.com

³ Research Technician, Department of Forest Sciences, University of British Columbia, 304 –2424 Main Mall, Vancouver, BC V6T 1Z4. E-mail: candisl@shaw.ca
Introduction

Decomposition of organic matter is one of the ecological processes critical to the functioning of forest ecosystems. Through the related processes of decomposition and mineralization, litter is broken down, and the carbon and nutrients within the litter are released into the forest floor where the nutrients are available for plant uptake. The rate and completeness of decomposition are primarily the result of microbial activity, but are also influenced by the composition and activities of the soil fauna (Figure 1). The community of soil organisms present and their activities are in turn related to environmental (largely climatic) conditions and the chemical and physical nature of the litter. By influencing any of these factors, forestry activities have the potential to alter rates of litter decomposition in forests. There are currently several commonly held beliefs about litter decomposition rates in British Columbia forests and the effects of forestry practices on these rates. These beliefs, their basis in the literature, and the results of experiments that test their validity are described below.

1. Decomposition is slowest in cold (northern and high-elevation) forests

It is often stated that litter decomposition is slow in cold forests (i.e., those forests at high elevation or northern latitudes), which leads to large accumulations of humus in these forests. This is true globally (i.e., comparing tropical and taiga forests [Kimmins 1997]); however, it is not clear whether this is true regionally, as in British Columbia. Laboratory experiments (Bunnell et al. 1976) have shown that adequate conditions of both temperature and moisture must be present for decomposition to proceed. Measures such as actual evapotranspiration (AET) that incorporate both temperature and moisture have been used successfully to predict rates of decomposition across a wide range of climates (Meentemeyer 1978). To date, no comparative studies of either litter decomposition rates or humus accumulations have been conducted across the range of climates in British Columbia.

2. Decomposition is faster in clearcuts than in forests

It is also generally believed that litter decomposition is faster in clearcuts than in undisturbed forests. Clearcutting forests often results in increased availability of nutrients (Bormann and Likens 1979; Vitousek et al. 1979; Smethurst and Nambiar 1990), which has been attributed to faster decomposition and mineralization of the residual organic matter (Covington 1981; Kimmins 1997). This, in turn, has been attributed to greater microbial activity resulting from the warmer, moister conditions in clearcuts (Edmonds and McColl 1989; Frazer et al. 1990). However, decomposition rates have been reported as faster, slower, or the same in clearcuts compared with forests, depending on the regional climate (Yin et al. 1989). Further, the influence of clearcutting on decomposition rates may differ with depth in the forest floor (Binkley 1984; Yin et al. 1989).

3. Broadleaf litter decomposes more rapidly than needle litter

Another general belief is that broadleaf litter decomposes faster than needle litter and that a broadleaf component in a stand will hasten decomposition rates and nutrient cycling in forests for several reasons. First, broadleaf litter generally has higher nutrient concentrations and lower lignin and polyphenol concentrations than needle litter, and so would be expected to decompose faster (Perry et al. 1987; Peterson et al. 1997). Cornelissen (1996) found that leaves of deciduous species decomposed twice as fast as those of evergreens under controlled conditions. In the International Biological Program studies (Cole and Rapp 1981, cited by Perry et al. 1987), turnover of forest floor organic matter in temperate deciduous stands was more than four times faster than in temperate coniferous stands. Flanagan and Van Cleve (1983) found that birch (Betula papyrifera Marsh.) litter decomposed six times faster than spruce (Picea mariana [Mill.] B.S.P.) litter. However, other studies have not consistently reported faster decomposition.
or N mineralization of broadleaf litter compared with needle litter (McClaugherty et al. 1985; Gower and Son 1992).

4. Decomposition is faster in N-fertilized forests
 It is generally assumed that increasing N availability through fertilization will increase rates of litter decomposition. However, direct studies of the effects of N fertilization on decomposition rates have produced variable results, and indicate that external N supply has little effect on decay rate (Hunt et al. 1988; Prescott 1994). The effect of higher N concentrations in litter of a single species on decay rates is also unclear. Berg et al. (1987) found that greater N availability in pine needles stimulated decay in the early stages but inhibited decay during the later lignin decay phase, but Prescott (1994) found no influence. Prescott et al. (1992) suggested that decay of litter with low lignin and high labile C contents may be stimulated by fertilization, whereas decay of litter with high lignin and low labile C contents will not be affected.

The applicability of these four beliefs about litter decomposition rates and the influences of forestry practices on them to British Columbia forests were tested in field experiments across the province. The results of these and related experiments have been presented in greater detail in the cited publications. Here we synthesize the key findings of interest to forest managers, scientists, and educators in British Columbia.

Materials and Methods

In all experiments, rates of litter mass loss were measured using the litterbag technique. Freshly fallen foliar litter was collected in 0.125-m² plastic trays with fiberglass mesh in the bottom to minimize leaching. For forest floor material, the litter layer was brushed away and the F layer, excluding any underlying humus or mineral soil, was collected. Litterbags were constructed of fiberglass screening and were usually 10 × 10 cm, with 1.5-mm rectangular pores. Bags used to contain forest floor material were made of mesh with 0.5-mm pores. Two grams of air-dried litter or forest floor were inserted into the bags and the open end was stapled shut. All bags were transported to sites in separate envelopes and spillage into the envelopes was weighed and subtracted from original weights. Bags containing foliar litter were pinned to the surface of the forest floor; bags containing forest floor material were horizontally buried in the lower F layer of the forest floor. At annual intervals for up to 5 years, seven bags of each type were collected from each plot. The contents of each bag were dried at 65°C, and the weight of litter remaining was measured. Significant differences were reported at p < 0.05 for all experiments.

Question 1: Is Decomposition Slower in Colder Biogeoclimatic Zones?

Rates of decomposition of standard litter substrates were determined at 28 sites in nine biogeoclimatic zones across British Columbia (Table 1, Figure 2). Three litter types were selected to represent a range of substrate types: lodgepole pine (Pinus contorta Dougl.) needle litter, trembling aspen (Populus tremuloides Michx.) leaf litter, and forest floor material. The pine needle litter was collected from a lodgepole pine site in the Kananaskis Valley of Alberta described by Prescott et al. (1989). The aspen leaf litter was collected from a nearby aspen grove described by Taylor et al. (1989). The forest floor material was collected from a 125-year-old stand of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco), western hemlock (Tsuga heterophylla [Raf.] Sarg.), and western redcedar (Thuja plicata Donn.), in the University of British Columbia (UBC) Malcolm Knapp Research Forest near Vancouver, B.C. Thirty-five bags of pine needle litter and 21 bags of aspen leaf litter were installed at each site. Forest floor material was installed in 13 of the sites representing eight of the nine biogeoclimatic zones. Seven bags of pine and aspen were collected from each site annually for 4 and 3 years, respectively, and the dry weight of material remaining in each bag was measured. Forest floor material was collected annually for 4 years at most sites with the exception of the Boreal White and Black Spruce (BWBS) and Mountain Hemlock (MH) zones from which there were no collections during the third year. An Interior Douglas-fir (IDF) site was lost to fire after only 2 years of data had been collected.

Climatic measurements (annual mean temperature and total precipitation) during the incubation period were collected from the nearest British Columbia Ministry of Forests Fire Weather Station. Data gaps were filled with corrected data from nearby weather stations. Mass loss rates were compared with simple and multiple linear regression analyses to determine the best relationship for predicting relative rates of decomposition in British Columbia forests. Coefficients of determination (R^2), ANOVA F-values, and scatter in the residuals were used as indicators of the best regressions. Variables investigated include rainfall, average temperature, degree-days, potential evapotranspiration, actual evapotranspiration, relative humidity, and wind speed.
TABLE 1. Location and treatments of the 28 sites used in experiment 1 (in British Columbia unless otherwise noted)

<table>
<thead>
<tr>
<th>Location</th>
<th>Zone</th>
<th>Subzone</th>
<th>Map no.</th>
<th>Treatments</th>
<th>Elevation (m)</th>
<th>Clearcut size (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bear Mountain</td>
<td>BWBS</td>
<td>mw1</td>
<td>1</td>
<td>F C</td>
<td>850</td>
<td>62</td>
</tr>
<tr>
<td>Inga Lake</td>
<td>BWBS</td>
<td>mw1</td>
<td>2</td>
<td>C</td>
<td>900</td>
<td>141</td>
</tr>
<tr>
<td>Fairbanks, Alaska</td>
<td>BWBS</td>
<td>—</td>
<td>3</td>
<td>F C</td>
<td>400</td>
<td>6</td>
</tr>
<tr>
<td>Topley</td>
<td>SBS</td>
<td>mc2</td>
<td>4</td>
<td>F C</td>
<td>1100</td>
<td>30</td>
</tr>
<tr>
<td>Beedy Creek</td>
<td>SBS</td>
<td>dw1</td>
<td>5</td>
<td>F Pr</td>
<td>1000</td>
<td>—</td>
</tr>
<tr>
<td>Aleza Lake</td>
<td>SBS</td>
<td>wk2</td>
<td>6</td>
<td>F C</td>
<td>700</td>
<td>89</td>
</tr>
<tr>
<td>Paul Ridge</td>
<td>MH</td>
<td>mm</td>
<td>7</td>
<td>F</td>
<td>1400</td>
<td>—</td>
</tr>
<tr>
<td>Strachan Mountain</td>
<td>MH</td>
<td>mm</td>
<td>8</td>
<td>F</td>
<td>1040</td>
<td>—</td>
</tr>
<tr>
<td>Otter Creek</td>
<td>ESSF</td>
<td>wc2</td>
<td>9</td>
<td>F C</td>
<td>1500</td>
<td>15</td>
</tr>
<tr>
<td>Spanish Lake</td>
<td>ESSF</td>
<td>wc3</td>
<td>10</td>
<td>F C Pc</td>
<td>1550</td>
<td>29</td>
</tr>
<tr>
<td>Sicamous Creek</td>
<td>ESSF</td>
<td>wc2</td>
<td>11</td>
<td>F C Pr</td>
<td>1700</td>
<td>10</td>
</tr>
<tr>
<td>Lucille Mountain</td>
<td>ESSF</td>
<td>mm</td>
<td>12</td>
<td>F C Pc Sw</td>
<td>1500</td>
<td>17</td>
</tr>
<tr>
<td>Skihist</td>
<td>PP</td>
<td>xh</td>
<td>13</td>
<td>F</td>
<td>175</td>
<td>—</td>
</tr>
<tr>
<td>Trout Creek</td>
<td>PP</td>
<td>xh</td>
<td>14</td>
<td>F</td>
<td>700</td>
<td>—</td>
</tr>
<tr>
<td>Boston Bar</td>
<td>IDF</td>
<td>ww</td>
<td>15</td>
<td>F C Pr Gt</td>
<td>700</td>
<td>5</td>
</tr>
<tr>
<td>Valentine Lake</td>
<td>IDF</td>
<td>dk4</td>
<td>16</td>
<td>F C</td>
<td>1200</td>
<td>43</td>
</tr>
<tr>
<td>Opax Mountain</td>
<td>IDF</td>
<td>xh</td>
<td>17</td>
<td>F C Pr Pc</td>
<td>1100</td>
<td>2</td>
</tr>
<tr>
<td>Shawnigan North</td>
<td>CDF</td>
<td>xm2</td>
<td>18</td>
<td>F C</td>
<td>382</td>
<td>25</td>
</tr>
<tr>
<td>Shawnigan South</td>
<td>CDF</td>
<td>xm1</td>
<td>19</td>
<td>F C</td>
<td>303</td>
<td>8</td>
</tr>
<tr>
<td>Date Creek</td>
<td>ICH</td>
<td>mc1</td>
<td>20</td>
<td>F C Pr</td>
<td>450</td>
<td>18</td>
</tr>
<tr>
<td>Adams Lake</td>
<td>ICH</td>
<td>mw3</td>
<td>21</td>
<td>F C</td>
<td>700</td>
<td>30</td>
</tr>
<tr>
<td>Malakwa</td>
<td>ICH</td>
<td>mw3</td>
<td>22</td>
<td>F C</td>
<td>750</td>
<td>27</td>
</tr>
<tr>
<td>Hidden</td>
<td>ICH</td>
<td>mw2</td>
<td>23</td>
<td>F C</td>
<td>650</td>
<td>20</td>
</tr>
<tr>
<td>Mount Seven</td>
<td>ICH</td>
<td>mk1</td>
<td>24</td>
<td>F C Sw</td>
<td>1200</td>
<td>1</td>
</tr>
<tr>
<td>Ice Road</td>
<td>ICH</td>
<td>mw2</td>
<td>25</td>
<td>F C Sw</td>
<td>910</td>
<td>1</td>
</tr>
<tr>
<td>Port McNeill</td>
<td>CWH</td>
<td>vm1</td>
<td>26</td>
<td>F C</td>
<td>100</td>
<td>97</td>
</tr>
<tr>
<td>Blaney Lake</td>
<td>CWH</td>
<td>vm1</td>
<td>27</td>
<td>F C Pc</td>
<td>240</td>
<td>1</td>
</tr>
<tr>
<td>MASS Trial</td>
<td>CWH</td>
<td>mm2</td>
<td>28</td>
<td>F C Pc Sw Gt</td>
<td>800</td>
<td>65</td>
</tr>
</tbody>
</table>

*a BWBS = Boreal White and Black Spruce; SBS = Sub-Boreal Spruce; MH = Mountain Hemlock; ESSF = Engelmann Spruce–Subalpine Fir; PP = Ponderosa Pine; IDF = Interior Douglas-fir; CDF = Coastal Douglas-fir; ICH = Interior Cedar–Hemlock; CWH = Coastal Western Hemlock.

b F = forest; C = clearcut; Pr = partial cut; Pc = patch cut; Sw = shelterwood; Gt = green-tree retention.
Question 2: Are Decomposition Rates Faster in Forests than in Clearcuts?

Experiments to determine the effects of forest openings on rates of decomposition of litter and forest floors were established in seven biogeoclimatic zones in British Columbia. At 22 of the 28 mature forests used for Question 1, litterbags containing pine needles were installed in a forest and in an adjacent clearcut. The size of the clearcuts ranged from 1 to 141 ha (Table 1). Bags of aspen leaf litter and forest floor material were installed at 22 and 11 of the locations, respectively. Forest floor decomposition was measured in six biogeoclimatic zones. Seven bags of each material were collected from each location annually, and the dry mass of material remaining in the forests and clearcuts were compared using a two-way ANOVA with study location and forest opening as independent variables. Additional details about this experiment can be found in Prescott et al. (2000b).

Question 3: How Do Decomposition Rates of Broadleaf and Needle Litter Differ?

Three experiments were established to determine the relative decay rates of foliar litter of the main tree species in British Columbia. Additional details about these experiments can be found in Prescott et al. (2000c).

Fourteen Species

In the fall of 1993, foliar litter of the following 14 tree species was collected from sites across British Columbia: lodgepole pine, western white pine (Pinus monticola Dougl.), ponderosa pine (Pinus ponderosa Laws.), western hemlock, western larch (Larix occidentalis Nutt.), Engelmann spruce (Picea engelmannii Parry), subalpine fir (Abies lasiocarpa [Hook.] Nutt.), western redcedar, Douglas-fir, amabilis fir (Abies amabilis [Dougl.] Forbes), trembling aspen, black cottonwood (Populus trichocarpa Brayshaw), red alder (Alnus rubra Bong.), and vine maple (Acer circinatum Pursh).
Two grams of litter were put into litterbags; the size of the bags varied from 10×10 cm to 20×20 cm depending on the size of the leaves. Rates of decomposition of each litter were measured in a coastal mixed-conifer forest at the UBC Malcolm Knapp Research Forest near Vancouver, B.C., in the Coastal Western Hemlock dry maritime (CWHdm) zone. Bags were installed in December 1993 and collected annually for 5 years. Data were analyzed using a one-way ANOVA and Tukey’s procedure.

Spruce–Aspen

Decomposition of aspen leaf litter and spruce needle litter (both pure and mixed) was compared at four sites near Dawson Creek, B.C. (55°46’N, 120°14’W). Three of the plots (aspen, mixedwood, and clearcut) were in the Bear Mountain Community Forest, 10 km southwest of Dawson Creek. The third was a spruce stand near Taylor, B.C. All plots were in the Peace moist warm Boreal White and Black Spruce zone (BWBSmw1). Foliar litters of white spruce and trembling aspen were collected in September 1992 from mature aspen and spruce stands near Dawson Creek. Litterbags (10×10 cm) were constructed of a double layer of 1.5-mm mesh fibreglass screening, and filled with either 2.0 g (dry mass) of spruce needles, 2.0 g of aspen leaves, or 1.0 g of both species (mixed). Double bags were used to reduce spillage of spruce needles while allowing movement of soil fauna. Litterbags were pinned onto the surface of the forest floor at the four sites in November 1992. Seven bags of each type were collected from each plot after the first year (November 1993) and five litterbags of each type were collected from each plot annually for four more years. The dry mass of litter of each species was compared between species, and among mixed and pure litters (to determine the influence of litter mixing). The design of the experiment was a randomized complete block (RCB) with factorial allocation of litter species and litter mixing. The remaining mass of Douglas-fir and alder litter samples at each time period (split-plot RCB) and for the entire 3-year period (split-split plot RCB) was compared using ANOVA and Bonferroni’s multiple range test.

Douglas-fir–Paper Birch–Lodgepole Pine

Decomposition of foliar litters of these species was compared in three pure plots of each species near Skimikin (50°48’N, 119°26’W), in the Thompson moist warm Interior Cedar–Hemlock zone (ICHmw3). Foliar litter was collected in October 1994 in the three plots of each species in plastic trays with mesh in the bottom. Litterbags (15×15 cm) were constructed of a single layer of 0.5-mm mesh fibreglass screening, and filled with 2.0 g (dry mass) of litter of one species. Litterbags were pinned to the surface of the forest floor in the three plots of each species in April 1995. Three bags of each type were collected from each of the nine plots at yearly intervals for 4 years. The mass of each litter type remaining at each time was compared using ANOVA and Bonferroni’s multiple range test.

Question 4: Are Decomposition Rates Faster in Fertilized Forests?

Two experiments were established: one in a Douglas-fir forest at the Pack Forest near Seattle, Washington, and one in a trembling aspen forest in northeastern British Columbia.

Douglas-fir

Foliar litter was collected from three plots that received sewage sludge applications (SU1-3 in Prescott et al. 1993) and three unfertilized (control) plots (CU1-3). Average N concentrations in Douglas-fir foliar litter were 0.69% in
the control plots and 0.75% in the sludge-amended plots ($p < 0.05$). Bags containing 2.0 g of litter of each type were placed in a plot that had been fertilized six times with N, P, and S for a total of 1082 kg N/ha (plot F42 in Prescott et al. 1993), and in an adjacent control plot (F41) in September 1993. Seven bags of each type were collected annually for 4 years and the mass of litter remaining in each bag was measured. To determine effects of N-fertilization on the decomposition rate of Douglas-fir foliar litter, a two-factor ANOVA was used, using the fertilized and non-fertilized plots as the block effect.

Aspen

This experiment was in a 24-year-old stand of aspen 45 km north of Chetwynd, B.C. ($55^\circ 42'N, 121^\circ 38'W$), in the BWBSmwl zone (DeLong et al. 1990). The stand had been fertilized once with ammonium nitrate at 200 kg N/ha (Prescott et al. 1999). There were three blocks, each containing one plot of each treatment. Foliar litter was collected from all six plots and bags containing litter from each plot were placed in that plot and in the plots of the other treatments in the block in September 1993. Nitrogen concentrations in foliar litter were significantly greater ($F = 14.4, p < 0.05$) in N-fertilized plots (1.29% N) than in control plots (0.86% N). Five bags of each type were collected from each plot annually for 4 years and the mass of litter remaining in each bag was measured. The effect of N-fertilization on the decomposition rate of aspen foliar litter was assessed using a randomized complete block split-plot ANOVA. Additional details about this experiment can be found in Prescott et al. (1999).

Results and Discussion

Question 1: Is Decomposition Slower in Colder Biogeoclimatic Zones?

Lodgepole pine needle litter mass loss after 4 years was greatest in the CWH and ICH zones and least in the Ponderosa Pine (PP) followed by the BWBS zones (Figure 3a). The other five biogeoclimatic zones (MH, Coastal Douglas-fir [CDF], Interior Douglas-fir [IDH], Sub-Boreal Spruce [SBS], and Engelmann Spruce–Subalpine Fir [ESSF]) had intermediate rates of decomposition. For aspen leaf litter, mass loss after 3 years was greatest in the CWH followed by the MH zone (Figure 3b). The slowest decomposition rates of aspen leaf litter were in the PP, followed by the BWBS and IDF zones. Forest floor material decomposed more slowly than either pine or aspen litter (Figure 3c). Forest floor decomposition was fastest in the ICH and SBS zones and slowest in the PP and MH zones.
These results indicate that, within the range of climates in British Columbia, moisture most affects decomposition. All litter types decomposed the slowest in the PP zone, which is the driest zone (Table 2). Mass loss rates were about twice as fast in the CWH compared with the PP zone. Mean annual temperatures are similar in these zones, but average annual precipitation is about four times greater in the CWH (Table 2). Decomposition was also more rapid in zones with greater moisture but similar temperatures (e.g., ICH vs. IDF, CWH vs. CDF). The slow decomposition rates in the BWBS may be largely due to moisture, as they were slower than ESSF sites that have similar temperature but greater moisture. A temperature effect was evident when comparing the decomposition rates of pine needle litter and the forest floor between the MH and CWH zones. In the MH zone, which has greater moisture but lower temperature than the CWH zone, the decomposition rates for both were slower. However, decomposition of aspen leaves was almost as rapid in the MH as in the CWH zone.

Pine litter decomposition rate was negatively correlated with potential evapotranspiration (PET) and positively correlated with precipitation (Table 3). The slower decomposition associated with high PET values may be due to growing season droughts. This is supported by the relationship of mass loss and precipitation. Actual evapotranspiration (AET), which incorporates these two variables, was also significantly related to pine mass loss (Table 3). There was no relationship between the mass loss of aspen and climate (Table 3). Although PET and average precipitation were significantly related to mass loss, these two variables explained little of the variation in mass loss. The best equation to predict pine litter mass loss from climate was:

\[
 \text{Loss} = 0.75 - (0.00010205) \text{ETP} + (0.00012963) \text{PA},
\]

where: \(\text{Loss} \) = pine needle mass loss (g) after 3 years, \(\text{ETP} \) = potential evapotranspiration (cm) calculated using the Thornthwaite-Mather equation, and \(\text{PA} \) = average annual precipitation (cm) during the 3-year incubation.

The greater importance of moisture for litter decomposition in British Columbia forests probably reflects the extreme variation in moisture in British Columbia that results from the considerable topography and the maritime influence. Other litter decomposition experiments have used transects that differed more in temperature than in moisture. For example, Moore et al. (1999) found that decomposition was most strongly related to mean annual temperature in a cross-Canada transect; at 18 sites, average annual temperatures ranged from \(-10\) to \(+10^\circ\text{C}\), while annual precipitation ranged from 261 to 1783 mm. In a north–south transect in Sweden, Johansson et al. (1995) found a strong relationship between decomposition rate of Scots pine needles and average annual temperature. At the 22 sites in the Swedish study, average annual temperatures ranged from \(-0.5\) to \(+8^\circ\text{C}\), and average annual precipitation ranged from 425 to 1070 mm. In the British Columbia experiment, annual temperatures ranged from about 0 to \(-10^\circ\text{C}\), while precipitation averages ranged from about 400 to 3000 mm. This extreme variation in moisture in British Columbia is probably the reason that moisture, rather than temperature, is more closely related to decomposition rates in provincial forests.
Question 2: Are Decomposition Rates Faster in Forests than in Clearcuts?

Pine needle litter lost mass more rapidly in forests than clearcuts during the first 3 years, and faster in the clearcut during the fourth year, by which time the differences were no longer significant (Figure 4a). Clearcutting did not significantly affect rates of mass loss of aspen leaves (Figure 4b). Forest floor material lost mass slowly at all sites and was not significantly affected by clearcutting (Figure 4c).

Overall, litter decomposition in clearcuts was either slower or the same as that in forests. This may be related to surface drying during the snow-free season when decomposers are most active. The increased temperature and wind movement across a clearcut may exacerbate drying of litter, thus slowing decomposition to rates similar or lower than those in adjacent forests. This finding is in keeping with the conclusion of Yin et al. (1989) that the effect of forest opening on litter decomposition rate depends on the regional climate.

Question 3: How Do Decomposition Rates of Broadleaf and Needle Litter Differ?

Fourteen Species

Some differences in mass loss rates between broadleaf and needle litter are apparent in Figure 5. Vine maple litter decomposed much faster ($p < 0.0001$) than all other litters, losing 75% of its original mass during the first year. Thereafter, mass loss from vine maple was negligible. However, because of the large amount of mass lost during the first year, the total mass loss for vine maple was significantly different from all other litters through year 3. The other broadleaf litters lost mass more rapidly than some of the needle litters during the first 2 years although the rates were not significantly different from many of the conifers. Thereafter broadleaves decomposed more slowly so that there was no significant difference in mass remaining between hardwood and conifer litter after 3 years.

Spruce–Aspen

Aspen leaf litter lost significantly more mass than spruce needle litter during the 5-year incubation. The remaining mass for the two species was significantly different at all sampling times (Figure 6a). This was primarily due to significantly greater mass loss from aspen during the first year (65.5%) compared with spruce (29.2%). After the first year, aspen lost mass more slowly than spruce, resulting in more similar masses of aspen (19.3%) and spruce (27.5%) remaining after 5 years. There was no

FIGURE 4. Mass of (a) lodgepole pine needle litter, (b) aspen leaf litter, and (c) forest floor remaining after decomposing for 4, 3, and 4 years, respectively, in adjacent forests and clearcuts at 16 sites for pine and aspen litter and six sites for forest floor. Each point is the average mass remaining in the forest (x axis) and that in the clearcut (y axis) at one site after 1 (●), 2 (◇), 3 (◆), and 4 years (❖). The line indicates equal mass remaining in forest and clearcut. Source: Prescott et al. (2000b).
Mass remaining (g)

FIGURE 5. Mass remaining of foliar litter from 14 tree species in a coastal forest near Maple Ridge, B.C., during 5-year incubations.

Effect of mixing litters on decomposition rate of either spruce or aspen leaf litter at any sampling time or over the entire 5-year period.

Douglas-fir–Alder

Alder litter decomposed faster than Douglas-fir litter during the first 6 months, but thereafter there were no significant differences in mass remaining between the two species (Figure 6b). There was no significant effect of mixing litter on the litter mass of either species remaining at any sampling time.

Douglas-fir–Paper Birch–Lodgepole Pine

Birch leaf litter decomposed faster than either of the needle litters during the first year, but by year 3 there was no significant difference between the three species in the percentage of original mass remaining (Figure 6c).

In our experiments, broadleaf litter lost mass more quickly and then more slowly than needle litter. This result may be attributable to the broadleaf litter having greater concentrations of labile (leachable) material. The
rapid initial decay of broadleaves was not sustained and so may not indicate more complete decay or more rapid turnover of organic matter in broadleaf or mixed forests. There was no evidence that mixing broadleaf litter with needle litter hastened the decomposition of the needle litter. The effects of mixing litters on decomposition have been inconsistent; Fyles and Fyles (1993) suggested that the effects may be species specific and perhaps mixture specific. Our results clearly indicate that the mixing of needle litter with broadleaf litter is unlikely to hasten decomposition in mixedwood forests of British Columbia.

Question 4: Are Decomposition Rates Faster in Fertilized Forests?

Douglas-fir foliar litter collected from fertilized (sludge-amended) plots decomposed at the same rate as litter collected from control plots \((F = 0.31–36\) for the four harvests; \(p > 0.1\)) (Figure 7a). During the first 2 years, litter decomposed marginally more slowly in the fertilized plot than in the control plot \((F = 75.56\) and 49.00; \(p < 0.1\)), but by year 3 there was no difference in the mass of litter remaining in the control and fertilized plots.

Aspen leaf litter collected from plots of each of the three treatments did not differ in rate of decomposition \((F = 1.03–2.24\) during years 1–4, \(p > 0.1\)) (Figure 7b). There were also no differences between rates of decomposition in control and N-fertilized plots.

This experiment provided no evidence that fertilization of forests will result in an increased rate of litter decomposition. There was no effect of increased concentrations in the litter, and the only effect of adding fertilizer to the forest floor was a slight suppression of decomposition in the fertilized Douglas-fir plots. This finding is consistent with results of earlier experiments (Prescott et al. 1993; Prescott 1994) that also reported no effect of N fertilization on litter decomposition rates, and a slowing of litter decomposition rates in plots treated with sewage sludge (Prescott 1994).

General Discussion

Estimation of litter mass loss rates through the use of mesh litterbags has several widely recognized sources of error. First, moisture levels may be different within the bags than in the surrounding litter layer. Second, the normal movement of litter through the forest floor is impeded when it is enclosed in bags, so it may not decompose in the same environment as unenclosed litter at the same stage of decay. Third, and most worrisome, the mesh may exclude some of the larger soil fauna and thus not incorporate their activities into estimates of decay rates. These problems can be offset to some extent by using the smallest bags and the largest mesh possible (while still retaining the litter). However, especially in ecosystems known to have soil fauna active in processing litter, it is unlikely that litterbag data accurately represent the long-term fate of litter. Nevertheless, for comparative studies such as those described here, mass loss estimates...
from litterbag incubations should indicate relative rates of early decay and the factors that influence it.

The unexpected findings of these experiments have implications for management of forests in British Columbia. Although we do not actively manage litter decomposition, several assumptions about decomposition are implicit in our expectations about sites and the effects of management activities thereon. For example, we expect nutrient availability to be low and potentially growth limiting in high-elevation forests, in part because the cold climate will cause litter decay to be slow. We expect that adding or increasing the broadleaf component will improve the site by increasing nutrient cycling and availability, partly through its higher quality litter and faster decay. We expect that harvesting forests will lead to a large and potentially problematic decline in organic matter because of faster decay of litter and humus under the warmer, moister conditions in openings. Finally, we might expect fertilizing forests to cause a large or prolonged increase in nutrient availability if it increases the rate of litter decay and associated nutrient release. Our results clearly challenge many of the assumptions we have about sites and management effects based on long-held beliefs about decomposition. Replacing these ideas about “what should happen” with evidence of “what really happens” should improve our ability to predict the outcome of management decisions.

Many of the “well-known facts” about decomposition rates were actually only guesses derived in the absence of direct evidence, and as such need to be continuously revised in light of new evidence presented here and elsewhere.

Although we do not actively manage litter decomposition, several assumptions about decomposition are implicit in our expectations about sites and the effects of management activities thereon.
References

Prescott, C.E., J.P. Corbin, and D. Parkinson. 1989. Input, accumulation, and residence times of carbon, nitrogen, and phosphorus in four Rocky Mountain

© FORREX–Forest Research Extension Partnership. ISSN 1488-4674. Information in this publication may be reproduced in electronic or print form for use in educational, training, and not-for-profit activities provided that the source of the work is fully acknowledged. However, reproduction of this work, in whole or in part, for commercial use, resale, or redistribution requires written permission from FORREX–Forest Research Extension Partnership. For this purpose, contact: Managing Editor, Suite 702, 235 1st Avenue, Kamloops, BC V2C 3J4.