
Abstract
Observing landscape patterns at various temporal and spatial scales is central to classifying
and mapping ecosystems. Traditionally, ecosystem mapping is undertaken through a com-
bination of fieldwork and aerial photography interpretation. These methods, however, are
time-consuming, prone to subjectivity, and difficult to update. Light Detection and
Ranging (LiDAR) is an advanced remote sensing technology that has rapidly increased in
application in the past decade and has the potential to significantly increase and refine in-
formation content of ecosystem mapping, especially in the vertical dimension. LiDAR tech-
nology is therefore well-suited to providing detailed information on topography and
vegetation structure and has considerable potential to be used for ecosystem classification
and mapping. In this article, the potential to use LiDAR data to advance ecosystem mapping
is examined. The current state of the science for using LiDAR data to classify and map key
ecosystem attributes within an existing ecosystem mapping scheme is discussed by focus-
ing on British Columbia Terrestrial Ecosystem Mapping and its associated Predictive
Ecosystem Mapping. The article concludes by summarizing which components of ecosys-
tem mapping and classification are best suited to the application of LiDAR data, followed
by a discussion of the feasibility and future directions for mapping ecosystems with LiDAR
technology.

KEYWORDS: ALS-based ecosystem mapping; ecosystem classification; ecosystem mapping;
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Introduction
Ecosystems are the result of complex interactions between biotic and abiotic dynamics,
which manifest as wide-ranging spatial patterns across the landscape (Bailey 1985; Rowe
1996; Gustafson 1998; McMahon et al. 2004). Variations in landscape ecosystems, assuming
equal time and access to biota, result from landforms and their modification of local cli-
mates (Rowe 1996). These various landforms interact with climate and directly influence
hydraulic and soil-forming processes (Bailey 1987). At the site scale, local moisture avail-
ability dictates the type of vegetation present, with minor differences in slope and aspect
markedly influencing vegetation patterns (Bailey 1987). The ability to observe ecosystems
at varying scales and discern how their distribution changes across a landscape provides 1
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insight about why particular sites exist and how they are maintained, which improves the
capacity to anticipate downstream effects and gain insight about why changes take place
or how harmful effects might be mitigated (McMahon et al. 2004). 

Conventionally, the task of mapping ecological units comprises fieldwork and aerial
photography (Bailey et al. 1994; Rowe 1996; Wulder et al. 2012). While these processes
have been effective, they are not without shortcomings. Installation of plots and their
subsequent measurement can be time-consuming and expensive, and often can be neg-
lected in difficult-to-access areas. Temporal monitoring is additionally challenging and
costly (Lucas et al. 2008; Jones et al. 2012) because plots must be relocated and remea-
sured. Moreover, manual interpretation of aerial photography introduces biases and re-
quires specialized interpreters (Morgan et al. 2010). 

Digital, remotely sensed data are increasingly being applied to ecosystem mapping
because, in general, they are becoming more diverse, readily available, and inexpensive
(Lefsky et al. 2002). Digital data allow for automated or semi-automated mapping methods
to be used, thereby reducing bias and increasing cost-efficiency and the ability for map
updating and data collection for expansive or difficult-to-access locations (van Asselen &
Seijmonsbergen 2006; Thompson et al. 2016). Multispectral imagery is used to measure
tree structure, differentiate among tree age classes, and distinguish tree species (Li et al.
2013; Yang et al. 2014). Indices such as the Normalized Difference Vegetation Index in-
crease the ability to monitor net primary production, and have been used for wetland de-
lineation, land cover classification, and identification of various ecological responses (e.g.,
green-up timing, treeline change, fire recovery). 

Conventional airborne and satellite sensors, however, are limited in their capacity to
discriminate and map ecosystems, primarily because they lack the ability to denote spatial
patterns in three-dimensions; thus, they produce only two-dimensional images (Lefsky
et al. 2002). As a result, fine-scale topographic and vegetation structural observations are
neglected or simply inferred. Light Detection and Ranging (LiDAR) is an example of a re-
cent remote sensing technology that has rapidly advanced and increased in application
and use over the last decade. It can extend spatial analysis into the third dimension, is
well-suited to developing high spatial resolution digital elevation models (DEMs), and
can provide detailed information on vegetation structure. 

The objective of this article is to examine the potential to use LiDAR data to advance
ecosystem mapping by:

1) presenting a brief overview of LiDAR technology and its general applications
for classifying and mapping various abiotic and biotic ecosystem attributes;

2) examining more specifically LiDAR’s potential to classify key ecosystem at-
tributes within an existing ecosystem mapping scheme—British Columbia’s
Terrestrial Ecosystem Mapping (Resources Inventory Committee 1998); and

3) discussing the feasibility and future directions for using LIDAR data to map
ecosystems.

LiDAR and its application for classifying abiotic and biotic features
LiDAR is an active remote sensing technology that can provide simultaneous measure-
ments of Earth’s surfaces, both above ground (e.g., vegetation) and the terrain surface
itself (i.e., topography) (Harpold et al. 2015). To accomplish this, the distance between the
LiDAR sensor and the target is calculated (Jelalian 1980) by emitting beams of light and
measuring the time it takes for the reflections to be returned to the sensor (Figure 1). In
addition to the laser scanner unit, there is a Global Positioning System and an Inertial
Measurement Unit that track the orientation and location of the scanner (Harpold et al.
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2015). There are various LiDAR platforms, each operating on the same principle. Airborne
laser scanning (ALS) data are acquired by a system mounted on an aircraft, while terrestrial
laser scanning systems collect data from ground-based stationary and mobile platforms.
Less common is spaceborne laser scanning, which uses a system mounted on an orbiting
spacecraft. Overall, ALS is the most common application and is likely the predominant
platform for ecosystem-based classification research; it is the major focus of this discussion. 

There are two types of systems for acquiring ALS data: discrete return systems and
more recently, full waveform systems (Höfle & Rutzinger 2011). Discrete return systems
record single or multiple returns from a given laser pulse. As
the laser pulse is reflected back to the sensor, large peaks are
recorded as clouds of points that represent intercepted features
(Wulder et al. 2012). Full waveform systems digitize the entire
reflected energy from a return, with point clouds providing com-
plete vertical vegetation profiles and consequently more detail
and information than that of discrete ALS (Mallet & Bretar 2009;
Höfle & Rutzinger 2011; Wulder et al. 2012). Discrete return
LiDAR is currently more common and less expensive to obtain,
which makes it the most likely candidate for ecosystem classifi-
cation and mapping.

Ecosystems are influenced by abiotic attributes, such as ge-
omorphology, drainage patterns, and soil, which in turn, largely
determine the vegetative community in a location (Barnes et al.
1982). LiDAR-based DEMs provide a strong basis from which pre-
dictive physiographic classifications can be performed. They have
helped improve the identification of drainage patterns (including
within peatlands), stream channel delineation, and floodplain
mapping (Luscombe et al. 2014; Demarchi et al. 2016; Gaspa et al. 2016; Hamada et al.
20016). By applying filters to DEMs, anomalous pits and peaks can be removed, which pro-
vides a smoothed surface that allows discontinuities in the data (drainages) to be extracted
and classified (Heung et al. 2014; Luscombe et al. 2014). 

LiDAR data are also used successfully to accurately describe a variety of vegetation met-
rics such as height, crown cover, volume, and diameter (Leiterer et al. 2012; Wulder et al.
2012). The data are capable of providing detailed information to describe three-dimensional
texture, foliage-clustering characteristics, and gap distribution in an individual tree crown
(Jones et al. 2012; Li et al. 2013). Additionally, there has been marked success in classifying
forest structural classes (Jones et al. 2012; Reese et al. 2014; Valbuena et al. 2016), differen-
tiating between coniferous and deciduous trees (Leiterer et al. 2012; Tiede et al. 2012; Alberti
et al. 2013), and estimating the position of alpine treelines (Coops et al. 2013). 

Ecosystem mapping in British Columbia: Terrestrial and predictive 
ecosystem mapping
Many studies have used LiDAR data to classify various ecosystem attributes, but few have
combined terrain and vegetation metrics to classify ecosystem units specifically. To examine
this potential, British Columbia’s Terrestrial Ecosystem Mapping (TEM) and its associated
Predictive Ecosystem Mapping (PEM) methods were used in this study to examine the cur-
rent state of science for LIDAR and how it could be applied to advance ecological under-
standing and mapping. Terrestrial Ecosystem Mapping/Predictive Ecosystem Mapping are
part of a provincially mandated program that includes standards for inventory and mapping,
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Figure 1. Airborne LiDAR emitted pulse and
its returns



which was established by the British Columbia Resource Information Standards Committee.
Due to the extensive area of the province and the complexity, lengthy time required, and
expense of the program, much of British Columbia remains unmapped to the site level.
With refined methods that use remotely sensed data, it is possible that large areas could be
mapped, which would improve the ability to manage these landscapes.

Both the TEM/PEM approaches integrate biotic and abiotic attributes. Terrestrial
Ecosystem Mapping is the typical approach used for mapping at larger scales when de-
tailed ecological information is required. The TEM approach relies on using attributes
(Table 1) that are distinguishable from aerial photography; units are classified, delineated,
and pre-typed on photos by local ecologists. A portion of units and polygons are subse-
quently checked in the field to refine understanding of the relationships between photo
attributes and ground conditions; pre-typed attributes are then updated as necessary (RIC
1998). Alternatively, the PEM approach is often used when less detail is required and
smaller scale maps are appropriate. Predictive Ecosystem Mapping uses computer mod-
elling, which incorporates existing knowledge of ecosystem attributes and relationships,
to predict ecosystem representation in the landscape. Predictive Ecosystem Mapping uses
spatial data and local knowledge within an automated modelling process for map gener-
ation. In the PEM process, information for polygon delineation is usually derived from
data sources such as forest inventory, soils, or terrain mapping. Ecologists with local ex-
perience may still provide some interpretation. 

Table 1. Criteria required to classify attributes in ecosystem mapping, using
Terrestrial Ecosystem Mapping as an example.

a Includes landscape position and shape, aspect, slope, and drainage pattern
b CWH = Coastal Western Hemlock biogeoclimatic zone; vm1 = Submontane Very Wet Maritime

subzone; Hw = western hemlock; Ba = amabilis fir; Pl = lodgepole pine; Cw = western redcedar
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Mapped attribute Example of a feature type 
for the mapped attribute

Criteria for classification

Geomorphic
process

Snow avalanches
Gully erosion
Permafrost process

Geomorphic process
Topographya

Terrain 
attributes

Sandy gravelly (texture)
Fluvial (surficial material)
Terrace (surface expression)

Texture
Parent material
Surface expression
Qualifiers

Soil drainage Poorly drained 
Very rapidly drained
Imperfectly drained

Topographya

Soil depth
Terrain attributes
Drainage pattern

Site series CWHvm1/HwBa -Blueberryb

CWHvm1/HwPl - Cladina
CWHvm1/BaCw - Salmonberry

Stand height
Canopy characteristics
Understory or non-forested
vegetation composition
Tree species composition
Geomorphic process
Topographya

Soil depth
Terrain attributes
Drainage pattern
Forest floor



The topographic detail and precision that LiDAR data afford can improve the efficiency
and accuracy of most terrain attributes used within TEM/PEM (e.g., geomorphic process,
terrain attributes, and soil drainage). Improved classification models could increase the
ability to identify features that may otherwise be difficult to predict. In British Columbia,
for example, complex mountainous terrain often makes mapping features such as alluvial
fans, incised channels, and talus slopes difficult when using predictive methods, and as a
result requires manual classification methods. LiDAR data can enhance the interpretive
capabilities of geomorphic classification given the recent work in this field, which has
produced reasonably high accuracies (Anders et al. 2011a, 2011b, 2013; Möller & Dowling.
2015; Sarala et al. 2015). Many metrics for topology (e.g., elevation, slope gradient, slope
aspect, curvature, and topographic openness) can be obtained from high-quality DEMs
and can be used to improve models (Anders et al. 2011a; Greve et al. 2012; Maynard &
Johnson 2014; Akumu et al. 2015; Thompson et al. 2016). 

Figure 2. Example of layers created from a) a digital elevation model that could be
used for ecosystem mapping: b) topographic radiation aspect; values closer to 0 are
cool, and those near 1 are warm; c) topographic openness is the mean angle
between a centre cell and its surrounding cells; d) elevation percentile is the
percentage of cells that are lower than a centre cell in a given window; e) curvature;
f) Topographic Position Index is the difference between a cell elevation value and
the mean elevation of its surrounding cells; g) slope in degrees; h) Topographic
Wetness Index is a measure of wetness based on flow direction and accumulation;
higher values are increasingly wet; i) aspect.
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High-quality, detailed DEMs improve the ability to quantify the relationships between
topography and a specific criterion that changes with topography, such as surface expres-
sion (e.g., hummock, terrace). The classification of parent material (i.e., genetic material)
is particularly difficult because LiDAR cannot penetrate the ground to provide below-sur-
face metrics; therefore, its classification process completely relies on predictive methods.
However, using a Random Forest classifier, Heung et al. (2014) were successful at delin-
eating major parent material classes but less so for minority classes. 

Drainage is another terrain attribute that is affected by topology; it can occur via sur-
face runoff or soil infiltration. It is important that the contextual catchment that an area
is situated within be considered when evaluating soil drainage since water inputs such
as rain or snow can vary significantly among topographic and climatic regions. For ex-
ample, high-elevation bogs and fens on steep slopes are common within coastal areas of
British Columbia (Banner et al. 2005), and successful identification of these wetlands is
an important part of TEM ecosystem delineation. The incorporation of high-quality DEMs
is integral to mapping topographic depressions and drainages, and it enhances the delin-
eation of slope classes by providing detailed differentiation, even in areas with only subtle
local relief changes (Aspinall & Sweeny 2012; Luscombe et al. 2014). Such detailed met-
rics allowed Luscombe et al. (2014) to highlight drainage patterns across a peatland and
identify sinks as drainage features or flushes. 

Aspinall & Sweeny (2012) renewed existing soil maps using high-resolution LiDAR-
based DEMs and were able to differentiate drainage patterns in subtle relief areas that
had previously gone undetected. High-resolution DEMs also provide soil landscape feature
definition that allows for subtle differentiation of morphometric elements to be used as
diagnostic elements (Aspinall & Sweeny 2012). Soil depth is a criterion used in the TEM
process to help map drainages; however, because LiDAR does not penetrate the ground,
using it as a tool for measuring soil depth is not possible, and no studies were found that
used LiDAR topography metrics to predict soil depth.

Improving topographic information will also aid in the classification and mapping of
vegetation attributes. Site series is one of the most important attributes in the British
Columbia ecosystem mapping approach. It accounts for the variation in site conditions
encountered within a biogeoclimatic unit (Ecological Data Committee 2000). Site series
describe all land areas within a biogeoclimatic subzone or variant that are capable of sup-
porting mature communities of the same plant association or subassociation (Pojar et al.
1987). This can usually be related to a specified range of soil moisture and nutrient
regimes, but sometimes other factors, such as aspect, air flow (e.g., cold air ponding), or
disturbance regime (e.g., flooding), are also important determinants.

Stand height and forest canopy characteristics offer insight about the particular site se-
ries, and LiDAR is a well-demonstrated tool used to gather height metrics and canopy vari-
ables, such as canopy closure, stem count, and tree diameter and volume (Næsset & Økland
2002; Lim et al. 2003). Airborne laser scanning estimates of individual height have been
shown to be more consistent than manual, field-based measurements; however, ALS esti-
mates of plot mean tree height may be lower than field-measured height, and bias increases
with stand height but is not evident in the ALS data for maximum tree heights (Næsset &
Økland 2002). Canopy height descriptors, height percentiles, and canopy volume profiles
are some of the most widely used metrics for determining structural or seral stages (Jones
et al. 2012). Canopy structure is necessary for differentiating coniferous and deciduous trees
(Alberti et al. 2013; Kumar et al. 2015), detecting residual trees (García-Feced et al. 2011),
and quantifying canopy height ranges (Latifi et al. 2015; Lopatin et al. 2015). 
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Describing the vegetative community of a specific location is integral to site series
classification. However, it is not always crucial for grasses and shrubs to be identified to
the species level; rather, defining the structural class (i.e., herb, grassland, shrub) can be
sufficient for classifying site series when combined with other biotic and abiotic attributes
(e.g., differentiating between bog woodland and bog forest). In British Columbia’s south-
ern Gulf Islands, Jones et al. (2012) were able to differentiate among TEM-defined struc-
tural classes using three common metrics derived from ALS data. All ALS variables
significantly distinguished among certain TEM structural classes. The importance of each
metric used varied with the stage differentiation under consideration. All structural
classes were differentiable, but the number and types of LiDAR metrics that were able to
distinguish among particular combinations decreased with a stand’s age and structural
complexity (Jones et al. 2012). 

Spectral data, particularly hyperspectral data, can provide important information about
ecological conditions (Lawley et al. 2016), tree health (Michez et al. 2016), above-ground
biomass (Greaves et al. 2016), and tree species classification (Dalponte et al. 2012, Zhang
et al. 2016). Site series define the potential vegetation for a site. The most promising ad-
vances in determining tree species using LiDAR occur when other optical remote sensing
imagery are incorporated. The dense sampling and narrow band measures of the tree species’
spectral signatures allow each portion of the spectrum to be related to specific characteris-
tics of the trees, which can then be interpreted for classification purposes (Dalponte et al.
2012). As a result, a number of studies have mapped species using a combination of spec-
tral- and LiDAR-derived structural information (Colgan et al. 2012; Dalponte et al. 2012).
Yang et al. (2014) combined satellite multispectral imagery (RapidEye) and LiDAR data for
species identification within the Canadian boreal forest. Their best result combined LiDAR
and RapidEye using the Random Forest classifier. Yang et al. (2014) concluded that the
most significant LiDAR metrics and RapidEye bands for tree species mapping were DEM,
slope, canopy height, red-edge Normalized Difference Vegetation Index, and red-edge and
near-infrared spectroscopy bands. Without the fusion of spectral and LiDAR data, full wave-
form data provide the most likely candidate for species classification. Li et al. (2013) were
able to classify four species—sugar maple (Acer saccharum), trembling aspen (Populus
tremuloides), jack pine (Pinus banksiana), and eastern white pine (Pinus strobus)—with
an overall accuracy of 77.5% using only full waveform data.

Finally, characterizing the forest floor is used to help classify site series. The forest
floor is made up of organic matter that has fallen from the vegetation above (i.e., leaves,
twigs, bark); it exists in various decompositional states, and organic matter can be macro
sized (upper litter layers) or indistinguishable (lower humic layers). No studies were found
that used LiDAR to specifically describe these characteristics. The primary studies that
use LiDAR to measure or describe a forest floor characteristic are associated with forest
fuel loads and are not directly applicable to TEM classification methods. 

Future directions and applications
The most practical form of LiDAR for ecosystem mapping will be discrete return ALS be-
cause it is more available than full waveform and it can cover areas that are not practical
for terrestrial laser scanning. Point densities can vary between 1 and 15 points/m2.
Increasing point density will likely improve feature identification, classification, and sub-
sequent ecosystem mapping. For example, Wu et al. (2016) compared five data sets of vary-
ing point densities from 0.5 to 8.0 points/m2 and found that for above-ground biomass,
estimate errors decreased alongside increasing point density. With regard to terrain fea-
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tures, Anders et al. (2013) classified geomorphic features using data sets with point densi-
ties of 0.8 and 7.5 points/m2; these produced an average accuracy of 0.66 and 0.79, respec-
tively. Increased point density has subsequently larger storage and increased processing
time and power requirements. Depending on the application or even the terrain features,
lower point densities could be sufficient. Coarse landforms or open forests do not require
the same detail to identify features or understory shrubs. Subtle, micro-terrain or closed
canopies may require higher point densities for accurate interpretation of features. 

The quality of LiDAR data collected directly relates to the quality of classification out-
put (Anders et al. 2013). Vegetation (leaf-off versus leaf-on) and ground (snow cover) con-
ditions during data acquisition can affect data quality. However, White et al. (2015) found
no significant difference (p < 0.05) between most leaf-on and leaf-off ALS metrics used
in area-based models. Canopy density metrics for deciduous trees and the fifth height per-
centile for coniferous trees were significantly different based on leaf conditions. LiDAR
has contributed to the advancement of cryospheric research on features such as snow
cover, glaciers, ice sheets, and permafrost (Bhardwaj et al. 2016). It does not, however,
penetrate snow, and to obtain the most accurate terrain metrics, data acquisition must
occur while the ground is snow-free.

Ecosystems are subject to dynamics, disturbance, and change (Huston 1979;
Gustafson 1998). Terrestrial Ecosystem Mapping classifies geological processes as active
or inactive. Mapping active processes temporally would allow dynamic landscape change
to be detected, quantified, and reclassified where applicable. Anders et al. (2013) compared
delineation results for two years of data and showed that identifying geomorphological
change is possible by quantifying volumetric change for each landform class. Compared
to current change detection methods that primarily subtract multi-temporal DEMs from
each other to detect change, the Anders et al. (2013) methods allow changes in landforms
due to geomorphological processes to be determined. The authors believe that their meth-
ods provide a reproducible framework to repeat landform classifications and analyze
change detection.

Criteria used to classify ecosystem attributes that are highly feasible to attain using
ALS data and which can be used in additional research are canopy characteristics, stand
height, and topography (Table 2). While not stand-alone criteria for ecosystems, they do
provide a reliable and essential base for predictive modelling. Conversely, attributes that
are currently not feasible to classify with ALS data are soil depth and forest floor (Table 2).
Inferring soil depth, and to a lesser extent, soil order, based on terrain attributes and ge-
omorphologic process is possible. However, depth classifications would likely be very
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Table 2. Feasibility of using LiDAR data to describe criteria for attribute
classification

a Includes landscape position and shape, aspect, slope, and drainage pattern
b Includes texture, parent material, surface expression, and qualifiers

Feasible/well
established

Feasible/requires 
more research Not feasible

Criteria for
classification

• Canopy
characteristics 
• Stand height 
• Topographya

• Geomorphological process 
• Drainage pattern
• Terrain attributesb

• Soil drainage
• Tree species composition
• Understory or non-forested
vegetation composition 

Soil depth
Forest floor 



broad and the resolution too coarse for reliable accuracies to be reached (e.g., valleys
have deep soil; steep slopes have shallow soil). Additionally, using ALS data to describe
the forest floor is currently not likely given that they provide minimal information that
can contribute toward ecosystem classification. 

The important next step is to use the well-established ALS-based metrics and integrate
them with the classification of the less established ecosystem attributes: geomorphic
process, drainage pattern, terrain attributes, soil drainage, tree species composition, and
understory or non-forested vegetation composition (Table 2). The use of ALS data to clas-
sify these attributes independently is increasing. The integration of this knowledge into
a workflow alongside the well-established metrics has yet to be used to test the feasibility
of ALS-based ecosystem mapping. 

Terrain attribute criteria that are most plausible to successfully classify using ALS
are surface expression (e.g., blanket veneer, terrace, hummock) and surficial material
(i.e., parent material). Drainage patterns can be discerned from hydrologically conditioned
DEM and can form a critical component for classification of soil drainage (e.g., poorly
drained, well drained). Geomorphological classification from ALS data has had marked
success through the work of Anders et al. (2011a, 2011b, 2013) and van Asselen &
Seijmonsbergen (2006). The most appropriate layers to use for the segmentation and clas-
sification of terrain attributes, drainage pattern, and geomorphic process will need to be
tested. However, topographic openness (Yokoyama et al. 2002 in Anders et al. 2011a), el-
evation percentile (Gallant & Wilson 2000 in Anders et al. 2011a), surface curvature
(Akumu et al. 2015), Topographic Position Index (TPI), (Jenness 2006 in Akumu et al.
2015), and slope angle (Burrough & McDonnell 1998 in Anders et al. 2011a) have all been
shown to be useful (Figure 2). 

For vegetation layers, segmentation and classification could be improved by using the
ALS point cloud rather than just using ALS-based DEMs (Tiede et al. 2012). It is expected
that coniferous and deciduous trees can be distinguished and the structural stage (e.g.,
herbaceous, shrub, mature forest) can be identified with ALS data. For species classification,
it is anticipated that spectral data will be an important addition to ALS data, as will indicators
of the local environment, including terrain attributes such as Topographic Wetness Index
(Figure 2) (Tarboton 1997 in Thompson et al. 2016), Topographic Radiation Aspect
(Figure 2) (Roberts & Cooper 1989 in Thompson et al. 2016), gap fraction (Thompson et al.
2016), Normalized Difference Vegetation Index (NDVI), height percentiles (Jones et al. 2012),
canopy height descriptors, and volume profiles (Jones et al. 2012).

Within the current science, a wide variety of techniques for attribute classification ex-
ists, the most plausible being Object-based Image Analysis. Object-based approaches are
applied directly to the point cloud or to rasterized canopy or terrain models and/or images
(Höfle & Rutzinger 2011). Generally, these approaches first spatially segment the surface
into homogeneous areas to define patches of points or pixels, which represent a part of an
object. Segments are then merged to create an object of interest by applying a classification
on statistical features. Features that describe segments can be either related to the statis-
tical distribution of the point or pixel values within them or to their geometrical and topo-
logical characteristics, such as segment shape, size, and neighborhood relations.

It is likely that the best method will be to use a stratified approach that first segments
and classifies individual ecosystem attributes (e.g., geomorphic process) to feature type
(e.g., snow avalanches, gully erosion) and then applies all of these layers to segment and
classify ecosystem type. For Object-based Image Analysis methods, objects can be created
from ALS-derived DEM data but also from almost every other continuous data set of an
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area, like optical imagery, or already existing classifications (e.g., cadastral maps, soil
maps, land use/land cover maps, forest inventory maps) (Tiede et al. 2012). However, at
a provincial level, many of these data are not available, so it will be important that attrib-
utes can be classified without these data or that areas that do have multiple data sets
(such as many Tree Farm Licences) are mapped first. Implementation of automated meth-
ods will be important to ecosystem classification and mapping. By using automated meth-
ods, analysis becomes easier to replicate and update. 

Acknowledgements
We would like to thank British Columbia’s Ministry of Forests, Lands and Natural Resource
Operations Research Program for its contribution to this research. We also acknowledge
the Natural Sciences and Engineering Research Council of Canada (NSERC) for a graduate
student award to Lorraine Campbell and a Discovery grant to Sari Coops.

References
Akumu, C., J. Johnson, D. Etheridge, P. Uhlig, M. Woods, D. Pitt, & S. McMurray. 2015. GIS-fuzzy logic

based approach in modeling soil texture: using parts of the Clay Belt and Hornepayne region in
Ontario Canada as a case study. Geoderma 239:13–24.

Alberti, G., F. Boscutti, F. Pirotti, C. Bertacco, G. De Simon, M. Sigura, F. Cazorzi, & P. Bonfanti. 2013. A
LiDAR-based approach for a multi-purpose characterization of alpine forests: an Italian case study.
iForest-Biogeosciences and Forestry 6(3):156.

Anders, N.S., A.C. Seijmonsbergen, & W. Bouten. 2011a. Segmentation optimization and stratified
object-based analysis for semi-automated geomorphological mapping. Remote Sensing of
Environment 115(12):2976–2985.

__________. 2013. Geomorphological change detection using object-based feature extraction from
multi-temporal LiDAR data. IEEE Geoscience and Remote Sensing Letters 10(6):1587–1591.

Anders, N., M. Smith, A. Seijmonsbergen, & W. Bouten. 2011b. Optimizing object-based image analysis
for semi-automated geomorphological mapping. Geomorphometry :117–120.

Aspinall, J., & S. Sweeney. 2012. Digital soil mapping in Ontario, Canada: an example using high
resolution LiDAR. In: Digital soil assessments and beyond. Minasny, Malone & McBratney (editors).
pp. 307-312. Taylor and Francis, UK.

Bailey, R.G. 1985. The factor of scale in ecosystem mapping. Environmental Management 9(4):271–275. 

__________. 1987. Suggested hierarchy of criteria for multi-scale ecosystem mapping. Landscape and
Urban Planning 14:313–319.

Bailey, R., M. Jensen, D. Cleland, & P. Bourgeron. 1994. Design and use of ecological mapping units.
Ecosystem Management: Principles and Applications 1:95–106.

Banner, A., P. LePage, J. Moran, & A. de Groot. 2005. The HyP 3 Project: Pattern, process, and productivity
in hypermaritime forests of coastal British Columbia–a synthesis of 7-year results. B.C. Ministry of
Forests, Research Branch, Victoria, B.C. Special Report 10. 

Barnes, B.V., K.S. Pregitzer, T.A. Spies, and V.H. Spooner. 1982. Ecological forest site classification. Journal
of Forestry 80(8):493–498.

Bhardwaj, A., L. Sam, A. Bhardwaj, & F.J. Martín-Torres. 2016. LiDAR remote sensing of the cryosphere:
present applications and future prospects. Remote Sensing of Environment 177:125–143.

Burrough, P.A., & R.A. McDonell. 1998. Principles of geographical information systems. Oxford
University Press, UK.

Colgan, M.S., C.A. Baldeck, J. Féret, & G.P. Asner. 2012. Mapping savanna tree species at ecosystem
scales using support vector machine classification and BRDF correction on airborne hyperspectral
and LiDAR data. Remote Sensing 4(11):3462–3480.

Coops, N.C., F. Morsdorf, M.E. Schaepman, & N.E. Zimmermann. 2013. Characterization of an alpine tree
line using airborne LiDAR data and physiological modeling. Global Change Biology 19(12):3808–3821.

Dalponte, M., L. Bruzzone, & D. Gianelle. 2012. Tree species classification in the Southern Alps based on
the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data.
Remote Sensing of Environment 123:258–270.

JEM
Vol 17, No 1

10

LIDAR AS AN
ADVANCED REMOTE

SENSING
TECHNOLOGY TO

AUGMENT
ECOSYSTEM

CLASSIFICATION
AND MAPPING 

Campbell, Coops,
& Saunders

J O U R N A L  O F  

Ecosystems&
Management



Demarchi, L., S. Bizzi, & H. Piégay. 2016. Hierarchical object-based mapping of riverscape units and in-
stream mesohabitats using LiDAR and VHR imagery. Remote Sensing 8(2):97.

Ecological Data Committee. 2000. Standard for Terrestrial Ecosystem Mapping (TEM) – digital data
capture in British Columbia: ecosystem technical standards and database manual. Victoria, B.C.
Ecosystems Working Group, version 3.0.

Gallant, J.C., & J.P. Wilson. 2000. Primary topographic attributes. In: Terrain analysis, principles and
applications. Wilson, J. P., & J. C. Gallant (editors). pp. 51-85. John Wiley & Sons, USA.

García-Feced, C., D.J. Tempel, & M. Kelly. 2011. LiDAR as a tool to characterize wildlife habitat: California
spotted owl nesting habitat as an example. Journal of Forestry 109(8):436–443. 

Gaspa, M., R. De La Cruz, N. Olfindo, N. Borlongan, & A. Perez. 2016. Integration of manual channel
initiation and flow path tracing in extracting stream features from LiDAR-derived DTM. PIE Remote
Sensing. International Society for Optics and Photonics.

Greaves, H.E., L.A. Vierling, J.U. Eitel, N.T. Boelman, T.S. Magney, C.M. Prager, & K.L. Griffin. 2016. High-
resolution mapping of aboveground shrub biomass in Arctic tundra using airborne LiDAR and
imagery. Remote Sensing of Environment 184:361–373.

Greve, M.H., R.B. Kheir, M.B. Greve, & P.K. Bøcher. 2012. Quantifying the ability of environmental
parameters to predict soil texture fractions using regression-tree model with GIS and LIDAR data:
the case study of Denmark. Ecological Indicators 18:1–10. 

Gustafson, E.J. 1998. Quantifying landscape spatial pattern: What is the state of the art?
Ecosystems 1(2):143–156. 

Hamada, Y., B.L. O’Connor, A.B. Orr, & K.K. Wuthrich. 2016. Mapping ephemeral stream networks in
desert environments using very-high-spatial-resolution multispectral remote sensing. Journal of
Arid Environments 130:40–48.

Harpold, A.A., A. Harpold, J. Marshall, S. Lyon, & T. Barnhart. 2015. Laser vision: LiDAR as a
transformative tool to advance critical zone science. Hydrology and Earth System
Sciences 19(6):2881–2897. 

Heung, B., C.E. Bulmer, & M.G. Schmidt. 2014. Predictive soil parent material mapping at a regional-
scale: a random forest approach. Geoderma 214:141–154. 

Höfle, B., & M. Rutzinger. 2011. Topographic airborne LiDAR in geomorphology: A technological
perspective. Zeitschrift für Geomorphologie, Supplementary Issues 55(2):1–29. 

Jelalian, A.V. 1980. Laser radar systems, pp. 546–554. EASCON’80, Electronics and Aerospace Systems
Conference.

Jenness, J. 2006. Topographic Position Index (tpi_jen. avx) extension for ArcView 3. x, v. 1.3 a. Jenness
Enterprises. http://www.jennessent.com/arcview/tpi.htm [Accessed September 2015]

Jones, T.G., N.C. Coops, & T. Sharma. 2012. Assessing the utility of LiDAR to differentiate among
vegetation structural classes. Remote Sensing Letters 3(3):231–238. 

Kumar, J., J. Weiner, W. Hargrove, S. Norman, F. Hoffman, & D. Newcomb. 2015. LiDAR-derived
vegetation canopy structure, Great Smoky Mountains National Park. 2011.ORNL DAAC, Oak Ridge,
Tennessee, USA.

Latifi, H., M. Heurich, F. Hartig, J. Müller, P. Krzystek, H. Jehl, & S. Dech. 2015. Estimating over- and
understorey canopy density of temperate mixed stands by airborne LiDAR data. Forestry 89(1):69–81. 

Lawley, V., M. Lewis, K. Clarke, and B. Ostendorf. 2016. Site-based and remote sensing methods for
monitoring indicators of vegetation condition: An Australian review. Ecological Indicators
60:1273–1283.

Lefsky, M.A., W.B. Cohen, G.G. Parker, & D.J. Harding. 2002. LiDAR remote sensing for ecosystem studies.
Bioscience 52(1):19–30. 

Leiterer, R., F. Morsdorf, M. Schaepman, W. Mücke, N. Pfeifer, & M. Hollaus. 2012. Robust
characterization of forest canopy structure types using full-waveform airborne laser scanning.
Proceedings of the SilviLaser. Vancouver, B.C., Canada. 

Li, J., B. Hu, & T.L. Noland. 2013. Classification of tree species based on structural features derived from
high density LiDAR data. Agricultural and Forest Meteorology 171:104–114. 

Lim, K., P. Treitz, M. Wulder, B. St-Onge, & M. Flood. 2003. LiDAR remote sensing of forest structure.
Progress in Physical Geography 27(1):88–106. 

Lopatin, J., M. Galleguillos, F.E. Fassnacht, A. Ceballos, & J. Hernández. 2015. Using a multistructural
object-based LiDAR approach to estimate vascular plant richness in Mediterranean forests with
complex structure. IEEE Geoscience and Remote Sensing Letters 12(5):1008–1012. 

Lucas, R.M., A. Lee, & P.J. Bunting. 2008. Retrieving forest biomass through integration of CASI and
LiDAR data. International Journal of Remote Sensing 29(5):1553–1577.

JEM
Vol 17, No 1

11

LIDAR AS AN
ADVANCED REMOTE

SENSING
TECHNOLOGY TO

AUGMENT
ECOSYSTEM

CLASSIFICATION
AND MAPPING 

Campbell, Coops,
& Saunders

J O U R N A L  O F  

Ecosystems&
Management

http://www.jennessent.com/arcview/tpi.htm


Luscombe, D.J., K. Anderson, N. Gatis, A. Wetherelt, E. Grand�Clement, & R.E. Brazier. 2014. What does
airborne LiDAR really measure in upland ecosystems? Ecohydrology 8:582–592. 

Mallet, C., & F. Bretar. 2009. Full-waveform topographic LiDAR: state-of-the-art. ISPRS Journal of
Photogrammetry and Remote Sensing 64(1):1–16. 

Maynard, J., & M. Johnson. 2014. Scale-dependency of LiDAR derived terrain attributes in quantitative
soil-landscape modeling: effects of grid resolution vs. neighborhood extent. Geoderma 230:29–40.

McMahon, G., E.B. Wiken, & D.A. Gauthier. 2004. Toward a scientifically rigorous basis for developing
mapped ecological regions. Environmental Management 34(1):S111–S124. 

Michez, A., H. Piégay, J. Lisein, H. Claessens, & P. Lejeune. 2016. Classification of riparian forest species
and health condition using multi-temporal and hyperspatial imagery from unmanned aerial
system. Environmental Monitoring and Assessment 188(3):1–19.

Möller, P., & T.P. Dowling. 2015. The importance of thermal boundary transitions on glacial
geomorphology; mapping of ribbed/hummocky moraine and streamlined terrain from LiDAR, over
Småland, South Sweden. GFF 137(4):252–283.

Morgan, J.L., S.E. Gergel, & N.C. Coops. 2010. Aerial photography: a rapidly evolving tool for ecological
management. Bioscience 60(1):47–59. 

Næsset, E., & T. Økland. 2002. Estimating tree height and tree crown properties using airborne
scanning laser in a boreal nature reserve. Remote Sensing of Environment 79(1):105–115. 

Pojar, J., K. Klinka, & D. Meidinger. 1987. Biogeoclimatic Ecosystem Classification in British Columbia.
Forest Ecology and Management 22(1):119–154.

Reese, H., M. Nyström, K. Nordkvist, & H. Olsson. 2014. Combining airborne laser scanning data and
optical satellite data for classification of alpine vegetation. International Journal of Applied Earth
Observation and Geoinformation 27:81–90.

Resources Inventory Committee (RIC). 1998. Standards for terrestrial ecosystem mapping in British
Columbia. Government of British Columbia, Victoria, B.C. 

Roberts, D.W., & S.V. Cooper. 1989. Concepts and techniques of vegetation mapping. General Technical
Report INT-US Department of Agriculture, Forest Service, Intermountain Research Station ,USA.

Rowe, J.S. 1996. Land classification and ecosystem classification. Environmental Monitoring and
Assessment 39(1-3):11–20. 

Sarala, P., J. Räisänen, P. Johansson, & K. Eskola. 2015. Aerial LiDAR analysis in geomorphological
mapping and geochronological determination of surficial deposits in the Sodankylä region,
northern Finland. GFF 137(4):293-303.

Tarboton, D.G. 1997. A new method for the determination of flow directions and upslope areas in grid
digital elevation models. Water Resources Research 33(2):309-319.

Thompson, S.D., T.A. Nelson, I. Giesbrecht, G. Frazer, & S.C. Saunders. 2016. Data-driven regionalization
of forested and non-forested ecosystems in coastal British Columbia with LiDAR and RapidEye
imagery. Applied Geography 69:35–50. 

Tiede, D., C. Hoffmann, & G. Willhauck. 2012. Fully integrated workflow for combining object-based
image analysis and LiDAR point cloud metrics for feature extraction and classification
improvement. ILMF International LiDAR Mapping Forum. 

Valbuena, R., M. Maltamo, & P. Packalen. 2016. Classification of multilayered forest development
classes from low-density national airborne LiDAR datasets. Forestry 45:15–25.

van Asselen, S., & A. Seijmonsbergen. 2006. Expert-driven semi-automated geomorphological mapping
for a mountainous area using a laser DTM. Geomorphology 78(3):309–320.

White, J.C., J.T. Arnett, M.A. Wulder, P. Tompalski, & N.C. Coops. 2015. Evaluating the impact of leaf-on
and leaf-off airborne laser scanning data on the estimation of forest inventory attributes with the
area-based approach. Canadian Journal of Forest Research 45(11):1498–1513.

Wu, Z., D. Dye, J. Stoker, J. Vogel, M. Velasco, & B. Middleton. 2016. Evaluating LiDAR point densities for
effective estimation of aboveground biomass. International Journal of Advanced Remote Sensing
and GIS. 5:1483–1499. 

Wulder, M.A., J.C. White, R.F. Nelson, E. Næsset, H.O. Ørka, N.C. Coops, T. Hilker, C.W. Bater, & T.
Gobakken. 2012. LiDAR sampling for large-area forest characterization: a review. Remote Sensing of
Environment 121:196–209. 

Yang, X., N. Rochdi, J. Zhang, J. Banting, D. Rolfson, C. King, K. Staenz, S. Patterson, & B. Purdy. 2014.
Mapping tree species in a boreal forest area using RapidEye and LiDAR data, pp. 69–71. Geoscience
and Remote Sensing Symposium (IGARSS), IEEE International. 

JEM
Vol 17, No 1

12

LIDAR AS AN
ADVANCED REMOTE

SENSING
TECHNOLOGY TO

AUGMENT
ECOSYSTEM

CLASSIFICATION
AND MAPPING 

Campbell, Coops,
& Saunders

J O U R N A L  O F  

Ecosystems&
Management



Yokoyama, R., M. Shirasawa, & R.J. Pike. 2002. Visualizing topography by openness: A new application
of image processing to digital elevation models. Photogrammetric Engineering and Remote
Sensing 68(3):257–266.

Zhang, Z., A. Kazakova, L.M. Moskal, & D.M. Styers. 2016. Object-based tree species classification in
urban ecosystems using LiDAR and hyperspectral data. Forests 7(6):122.

Author information
Lorraine B. Campbell* Department of Forest Resource Management

2424 Main Mall. University of British Columbia, Vancouver. Canada. V6T 1Z4
Email: locampbell7@gmail.com

Nicholas C. Coops  Department of Forest Resource Management, 
2424 Main Mall. University of British Columbia, Vancouver. Canada. V6T 1Z4
Email: nicholas.coops@ubc.ca

Sari C. Saunders  Research Ecologist, Coast Area
2100 Labieux Rd. Nanaimo. Canada. V9T 6E9
Email: sari.saunders@gov.bc.ca

* Corresponding Author

ARTICLE RECEIVED: June 13, 2016 • ARTICLE ACCEPTED: March 23, 2017

© 2017, Copyright in this article is the property of the 
Journal of Ecosystems and Management

ISSN 1488-4674. Articles or contributions in this publication may be reproduced in electronic or
print form for use free of charge to the recipient in educational, training, and not-for-profit
activities provided that their source and authorship are fully acknowledged. However,
reproduction, adaptation, translation, application to other forms or media, or any other use of
these works, in whole or in part, for commercial use, resale, or redistribution, requires the written
consent of the Journal of Ecosystems and Management. This publication and the articles and
contributions herein may not be made accessible to the public over the Internet without the
written consent of JEM. For consents, contact: Managing Editor, Journal of Ecosystems and
Management, c/o CISP Press, Simon Fraser University, 515 West Hastings Street, Vancouver, BC.

The information and opinions expressed in this publication are those of the respective authors
and JEM does not warrant their accuracy or reliability, and expressly disclaims any liability in
relation thereto.

JEM
Vol 17, No 1

13

LIDAR AS AN
ADVANCED REMOTE

SENSING
TECHNOLOGY TO

AUGMENT
ECOSYSTEM

CLASSIFICATION
AND MAPPING 

Campbell, Coops,
& Saunders

J O U R N A L  O F  

Ecosystems&
Management

mailto:sari.saunders@gov.bc.ca
mailto:nicholas.coops@ubc.ca
mailto:locampbell7@gmail.com

